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Abstract. The present work deals with the analysis of the atomic-order dependence of the 
elastic constants of a BCC binary alloy near the A3B composition. We assume that each atom 
interacts with nearest and next-nearest neighbours through a pairwise interatomic potential. 
The configurational phase diagram of the system has been obtained from Monte Carlo 
simulation of a lattice model for such an alloy system. The DO3, B2 and A2 phases are found 
to be stable for appropriate values of the interaction parameters. 

The elastic constants of partially ordered configurations are calculated at T = 0 K, after 
quenches from different temperatures T, ranging over the stability regions of the three 
phases. The results are compared with experimental data corresponding to the Cu-Zn-AI 
shape memory alloy and their relevance in connection with the martensitic transformation 
is discussed. 

1. Introduction 

Elastic constants of solids are intrinsically related to lattice stability. They depend on 
composition and temperature (Born and Huang 1956). In the case of metallic alloys 
undergoing an order-disorder transition, the elastic constants exhibit an additional 
dependence on the configurational ordering state which, in turn, depends on tempera- 
ture. This extra contribution is revealed experimentally by an anomalous behaviour of 
the elastic constants around the order-disorder transition point (MacManus 1969). 

Theoretical expressions of isothermal elastic constants involve ensemble averages 
of functions of particle coordinates and of interparticle potential energies (Squire et al 
1969). Their calculation, which is believed to be a hard task, can be done by using Monte 
Carlo (Ray 1988, Castan et a1 1989) or molecular dynamics (Ray 1988) techniques. 

Here we deal with BCC alloy systems which exhibit, from low to high temperatures, 
DO3, B2 and A2 ordered structures. Examples are the Fe3Al, Cu3A1 and Fe3Pt binary 
alloys, and the Cu-Zn-A1 or the Cu-Ni-A1 ternary alloys. Some of these alloys (Fe3Pt 
(ordered), Cu-Zn-A1 and Cu-Ni-Al) are found to be shape memory alloys (SMA). From 
a practical point of view, these materials are of great importance because of their very 
interesting thermomechanical properties (shape memory effect, pseudoelasticity, high 
damping capacity) which are intimately related to the martensitic phase transition (MPT) 
that they undergo at low temperatures (DelaeyetaZ1974). Such a transition is adisplacive 
first-order transition from a BCC to a close-packed structure, mainly described by a shear 
deformation on the (110) planes along the ( 1 i O )  directions. Close to the MPT point (Ms), 
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the shear elastic modulus C‘ = &(CI1 - Cl2) presents an ‘abnormal’ behaviour (Guenin 
and Gobin 1982): (i) its value is small (in relation to the other relevant elastic constants 
of a cubic lattice), and (ii) decreases with decreasing temperature. Zener (1947) first 
predicted that the large elastic anisotropy due to the small value of C’ stabilises the /3- 
phase at high temperature by a large vibrational entropy, but the stability against a 
{110}(1~0) shear is reduced at low temperature. This favours the MPT. The Zener picture 
has been recently confirmed from first-principles calculations for the (BCC) Zr system 
(Ye et a1 1987) and in the case of Cu-Zn and Cu-Zn-A1 alloys from the analysis of 
measurements giving the resolved shear stress to induce the transformation as a function 
of temperature (Romero and Ahlers 1989). In spite of these results, the experimental 
studies clearly show that these transitions are not soft-mode transitions. It has then been 
proposed (Lindgird and Mouritsen 1986) that the transition is rather a consequence of 
the anharmonic interaction between the homogeneous strain associated with C’ and an 
inhomogeneous modulation. In the same framework, the martensitic transitions of Li 
(Gooding and Krumhansl 1988) and Ni,All-, (Gooding and Krumhansl 1989) have 
recently been studied with encouraging results. 

The fact that C’ depends on the atomic ordering state of the system makes this last 
quantity relevant in relation to the characterisation of the MPT. This idea is supported 
by both theory (Viiials et a1 1984) and experiments (Rapacioli and Ahlers 1979) and 
gives rise to a dependence of M ,  on the state of order of the system. In addition, it is 
known that the amount of order present in the system can be drastically changed by 
means of fast quenches (Planes et a1 1981). 

Very recently (Castan and Planes 1988), a Monte Carlo study of the relationship 
between C‘ and the state of order, described in terms of suitable order parameters, has 
been carried out for the (BCC) P-CuZn SMA. In order to eliminate the contribution arising 
from thermal effects, the equilibrium atomic-order configuration at a temperature Tq 
was suddenly quenched to T = 0 K. Then the elastic constants can be simply calculated 
in terms of the interaction potential energies. 

In the present work we focus our attention on the BCC binary alloy A,B1-, close to 
the A3B composition (x = 0.75). We use an Ising-type model to describe the state of 
order of the system with interactions up to next-nearest neighbours. The calculation of 
the phase diagram allows the establishment of the stability range of the DO3, B2 and A2 
phases we are interested in. Following standard procedures, we assume pairwise additive 
potentials for nearest and next-nearest neighbours and analyse the dependence of the 
elastic constants on the configurational ordering state in the DO3 and B2 regions. We 
find that the qualitative behaviour is independent of particular details of the potential. 
These results are discussed in relation to experimental data corresponding to the mar- 
tensitic transformation of Cu-Zn-A1 SMA. 

2. Theoretical considerations 

2.1. The model 

In this section we briefly summarise the main features of the model used to describe the 
state of order of the BCC alloy A,BI-, when x is close to the stoichiometric composition 
(x = 0.75). 

Consider a binary alloy with the following configurational Hamiltonian: 
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H =  C ( N t . L @ A A ( r p )  + ~ k d @ B B ( r p )  + N t A @ A B ( r p ) ) .  ( 1 )  
p = l  

N @  (a, = A, B) is the number of p-neighbour a/3 pairs and @&rp) its corresponding 
interaction potential energy when they are separated by a distance rp. We now introduce 
pseudo-spin variables (Gunton and Droz 1983) o,, which take the value 1 (- 1)  when the 
lattice site i is occupied by an atom A (B). Using spin language, the Hamiltonian (1) 
takes the form 

The first sum refers to nearest neighbours (NN) and the second to next-nearest neighbour 
(NNN) pairs. J 1  and J 2  are the ordering energies for NN and NNN respectively, which have 
the form 

J k  = a ( @ ~ ~ ( r k )  + @ ~ ~ ( r k )  - 2 @ A B ( r k ) )  k = 1,2.  ( 3 )  

x is the A-component atom fraction. Since NA and NB are respectively the numbers of 
atoms A and B, x = N A / N ,  with N = NA + NB being the total number of particles. The 
term Ho(x)  can be written as 

H,(x) = N[(2x - 1)h + h,] 

where 

h = + 2 ( @ A A ( r 1 )  - @'BB(YI)) + 3 ( @ A A ( r 2 )  - @BB(r2)) 

and ho is a constant given by 

ho = ( @ A A ( ~ I )  + @ B B ( ~ I )  + 2 @ A B ( Y 1 ) )  + 2(@AA(r2)  + @BB(r2)  + 2@AB(Y2)).  

Now we define the following dimensionless quantities: 

E = ( H -  H, (x) ) /J ,  = H / J ,  - ( 2 ~  - 1)Nh/J,  - Nho/JI 

W = J 2 / J 1 .  

Finally we get 

E = olol + W u,u,. 
WNN (f I )hNN 

2.2.  Relation to the elastic constants 

We introduce the effect of ordering by assuming that N&, and NfA are the mean values 
of these quantities in equilibrium at temperature Tq. The procedure simulates measure- 
ments of elastic constants after ideally fast quenches from Tq to temperatures Tf- 
low enough to neglect the role of thermal fluctuations. We have taken in all cases 
Tf = 0 K (Castan and Planes 1988). 

Assuming pairwise additive central forces and interaction up to NNN, the elastic 
constants of a BCC binary crystal can be written, at T = 0 K,  as (Castan and Planes 1988) 
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where Vis the volume of the system. The termsAI1,A andA ’ are given by the expressions 

A,, = NA(69k/4  + 6fA) + N,(6&/4 + 6gA) 
A = (NA6gL + NB6&) /4  
A’ = ( N A 6 f L  + NB6(’))/2 

( l o a )  

( lob)  

(10c) 
and 

@Fd = 4(d2~~~(.) /d(rZ)Z),=,e  (11a) 

6 y )  = 621 + 6pJ - 26P$ p = l , 2 .  (1lb) 
In ( l la) ,  the derivatives are calculated at r : ,  which is the equilibrium distance between 
y-neighbour pairs. A direct look at expression (9) shows that, in this approximation, C,, 
depends on both NgA and NfL, whereas C,, and C’ only depend on NfA and NfA 
respectively. We expect a NN and NNN approximation, which in turn ensures the mech- 
anical stability of the BCC lattice (Milstein 1970) to be good enough to reveal the main 
effects associated with B2 and DO, orderings. Concerning the centrality of the potential, 
it is believed to be a poor approximation for BCC metal systems. In particular, Monte 
Carlo simulations of elastic constants at finite temperature (CastAn et a1 1989) show that 
a central potential cannot simultaneously reproduce the behaviour of all the elastic 
constants. Nevertheless, we expect this approximation to be good enough to analyse the 
effect of atomic ordering on the elastic constants after quenches to very low temperature. 
Also, eventual changes of the lattice parameter with atomic order should be considered. 
Available experimental data corresponding to the Cu3Au (FCC) system indicate that 
changes of the lattice parameter with atomic order are very small (Roy et a1 1974). 
Unfortunately, to our knowledge, no similar study has been done for the systems we are 
dealing with. However, experimental results show that the lattice parameter of /3- 
CuZn presents only slight changes with composition (the lattice parameter changes 
by approximately 0.06% per 1% change in composition, Massalski and King 1961). 
Consequently the variation of the elastic constants with T, are given by 

That is, with 6 p ) ( p  = 1,2)  fixed, the behaviour of Cl1, C,, and C’ with Tq will be mainly 
controlled by the variation of N!& and NfA with Tq. 

In alloy systems undergoing an MPT, it has been found that the MPT temperature 
changes after a quench from Tq. It has been justified that this change 6 M ,  is, to a first 
approximation, proportional to the corresponding change in C’ (Nakanishi et a1 1968, 
Planes et a1 1985)). That is, 

6 M ,  = - K6C’ (13) 
K is a positive constant related to the slope of the temperature variation of C’(  T )  (K- ,  = 
dC’/d T) close to but above M,. For a given alloy, K is independent of temperature 
(GuCnin eta1 1977). If one additionally assumes Kindependent of the state of order, the 
results are consistent with experimental data (CastAn and Planes 1989). Then, 

6M, /6Tq  = - K 6C‘/ST,. (14) 
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Figure 1. Sublattice structure of the BCC lattice 

Let us specify that in the experimental procedure, the Tq-quenches are performed, to a 
final temperature Tfvery close to but above M,. Immediately afterwards, one continues 
decreasing the temperature and the MPT starts. Because of the diffusionless nature of 
the MPT, the state of order frozen at Tf will be preserved during the transformation. In 
addition, M ,  is usually low enough to neglect thermal fluctuations. Hence, it can be 
assumed that the change in C’ after the quench from Tq may be identified with the change 
obtained from equation (12). All these considerations enable us to write 

6 ~ , / 6 ~ ,  = ( ~ 6 , P ) / 1 2  v) 6 ~ g & / 6 ~ , .  (15) 
This expression tells us that changes in M ,  with Tq depend on the interaction potential 
through &J2) and on the way Nf& varies with the temperature Tq. Notice, however, that 
the role of the interaction potential is, in this approximation, limited to a coefficient in 
the linear relation between the Tq-variations of M ,  and NfA and that (15) no longer 
implies any necessary reference to particular fine details of the interaction potential. 
The comparison between experimental M,-behaviour and Monte Carlo calculations of 
Nf& , both as function of Tq, will give us information about the validity of these state- 
ments. 

3. Results and discussion 

In this section we present the Monte Carlo results corresponding to the equilibrium 
order behaviour of the alloy A$-, (x = 0.75) described by the model (8), using 
appropriate interaction parameters. The ground state of the system has been analysed 
by Richards and Cahn (1971). A wide variety of phases can appear depending on the 
values of x and W .  Particularly for x = 0.75 and 3 > W > 0, the ground state is DO3, and 
for x # 0.75 but close to it, the ground state can show a mixture of the stoichiometric 
phases DO3 and B2 or a gradual change in the occupancy of some of the sites due to the 
large degeneracy. 

Calculations have been carried out following standard Monte Carlo techniques 
(Binder 1984). The system is a BCC lattice with N = N A  + NB = 2(8)3 particles obeying 
periodic boundaryconditions. Thevolume of the system, V = ( 8 ~ ) ~ ~  and the temperature 
remain fixed in each simulation. Starting from an initial random configuration, the 
system relaxes to the equilibrium state by means of a two-sites spin-exchange excitation 
mechanism. 

In order to characterise the state of order of the system, let us define the following 
order parameters: 
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A2 

W 
Figure 2. Phase diagram, for x = 0.75, showing the stability region of the A2, B2 and DO, 
phases obtained from Monte Carlo simulations. 

where ,U = (a, b, c, d) means the four equivalent sublattices usually defined to subdivide 
the BCC lattice (see figure 1). 

In figure 2 we present the phase diagram for the stoichiometric composition (x  = 
0.75) within the range of interaction parameters 0 < W < 3. This is in agreement with 
previous Monte Carlo calculations (Dunweg and Binder 1987) and theoretical results 
(Bell 1987). One observes that when W < 0.50, the system passes through all three 
phases, DO3, B2 and A2, when one moves along the temperature axis. For W > 0.50, 
the B2 phase does not appear and only the DO3 and A2 phases are present. 

To exemplify the procedure used to calculate the phase diagram, we show in figure 
3 the behaviour of the order parameters (16) as a function of temperature for a value of 
the interaction parameter W = 0.25. In the same figure we have plotted both the Monte 
Carlo result and the mean-field calculation (Dunweg and Binder 1987). Near the tran- 
sition points, finite-size effects cause the round shape exhibited by the order parameters, 
and introduce a quite important uncertainty in the determination of such points as TB2 
and TDO3. We chose W = 0.25 to separate TB2 and TDO3 in order to reveal the distinct 
effects of both transition points on the different properties of the system. In what follows 
we restrict ourselves to this value. Nevertheless, the same qualitative results are obtained 
with different values of W. In particular, we have also studied the cases W = 0.20,0.30 
and 0.40. 

Figure 4 illustrates the temperature evolution of Ngg and Nfg, when x = 0.75, 
calculated using Monte Carlo and mean-field techniques. One observes that both 
methods give the same qualitative behaviour for N!& and N f A  across the range of 
temperatures. This is an unexpected result considering the disagreement between the 
values obtained from both techniques for the long-range order parameters (as displayed 
in figure 3). It means that mean-field calculations can provide quite good qualitative 
information about the variation of N i b  and Nfg with temperature. Consequently, this 
approximation, provided no more exact theories are available, is good enough to obtain 
qualitative information about the change of elastic constants with ordering. 

In studying figure 4, one observes that NgL keeps nearly constant inside the DO3 
phase, whereas it shows a smooth decreasing in the B2 and A2 regions. Contrarily, 
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TD33 TD03(M1 T B 2  T B ~ ( M F )  

I t t t ,  

Figure 3. Long-range order parameters mu as a function of temperature for x = 0.75 and 
W = 0.25. The full circles correspond to Monte Carlo results and the full curves are just 
guides to the eye. Notice that near the transition temperatures, Monte Carlo results exhibit 
tails due to finite-size effects. The broken curves correspond to the mean-field solution. The 
arrows indicate the positions of transition temperatures from Monte Carlo (T,,, , TB2) and 
mean-field ( T D o , ( ~ ~ ) ,  T B p ( ~ ~ ) )  approximations. 

0.2 - 

Nfh displays a remarkable decrease in the DO3 region, remains almost constant in the 
B2 phase, and slowly increases in the A2 region. 

We have also performed Monte Carlo studies slightly below ( x  = 0.70) the stoi- 
chiometric composition. At low temperatures, complications arise from the high 
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degeneracy of the ground state which prevents the system from reaching the proper 
equilibrium state in a reasonable time. The behaviour obtained for both N t &  and N f h  
(figure 5) is similar to the one obtained in the stoichiometric case. 

From these results we argue that the temperature behaviour of properties depending 
onNg& and Nf& will be mainly distorted near the TDO3 ordering transition. In particular, 
taking into account equation (12), after quenches from Tq to very low temperatures, this 
effect should be found in the elastic constants C1,, C44, and C’ as well as in the martensitic 
transition temperature M ,  (see equation (15)). It is interesting to note that from our 
results we expect, in the DO3 region, more important relative changes with ordering in 
C’ than in C44. When considering the elastic constant C1,, predictions cannot be done in 
such a straightforward way because of its simultaneous dependence on both N& and 
Nf&. To proceed further, an analysis of the sign and relative magnitude of 611) and 
6i2) is required. In the B2 region, C44 and C’ exhibit relative variations with ordering of 
the same order of magnitude. As before, the expected behaviour for C,, needs a more 
elaborate analysis. In certain cases, the terms depending on N &  and N f &  could balance 
each other and give rise to a very weak variation of Cl1 with ordering. This is in agreement 
with previous experimental results corresponding to the B2-A2 transition in Cu-Zn 
(MacManus 1969). Following our arguments this implies that changes of elastic an- 
isotropy with ordering are mainly associated with changes in C‘.  

Very recently we have analysed the behaviour of the resolved shear stress to induce 
the martensitic transformation in two Cu-Zn-A1 alloys as a function of quenching Tq 
temperatures (Planes e6 a1 1989). Such an alloy can be viewed, to ordering effects, as a 
binary alloy. This is because ordering energies for the CuAl pairs are about 1.5 times 
greater than for CuZn pairs, but around 20 times greater than for ZnAl pairs (Ahlers 
1986, Castan and Planes 1989). By using the Clausius-Clapeyron equation, it is possible 
to obtain the corresponding shift of the M ,  temperature, AMs,  after quenches from the 
temperature Tq. It has been obtained that the equilibrium state at Tq can be frozen-in at 
low temperature by fast quenchesif Tq < 600 K. For temperatures above this, reordering 
takes place to a significant degree during the quench due to alarge vacancy concentration 
in the system. 
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Forthetwoalloysconsideredhere, thecompositionis: 61.96 at.% Cu;28.09 at .% Zn 
for alloy A ,  and 63.37 at .% Cu; 25.26 at .% Zn for alloy B. The corresponding order- 
disorder temperatures are: TDO3 = 460K and TB2 = 825K for alloy A, and 
TDO3 = 500 K and T,, = 825 K for alloy B. Following the previous argument, the DO3- 
B2 transition should then be suppressed by fast quenches from temperatures above 
500 K. Consequently, the effect of the B2 ordering alone on the M ,  temperature can be 
analysed after quenches from T, temperatures ranging between 500 and 600 K. In figure 
6 we have plotted (@A ( Tq) - NgA ( T ,  = 0 K))/(NfA ( T ,  =. TDO3) - N f A  ( T ,  = 0 K)) 
as a function of T,/TDo3 obtained from Monte Carlo simulations for the alloy A,B1-,, 
with x = 0.70 and 0.75. This quantity is compared with experimental values of 
(M, (Tq)  - M ;  )/(Ms( TDO3) - Mff ) as a function of Tq/TDO3 corresponding to the Cu- 
Zn-A1 alloys considered. M ;  is the MPT temperature measured after air cooling from 
T, = 1093 K and aging at room temperature. After this temperature treatment the 
degree of atomic order is very close to the maximum at room temperature. Indeed, we 
note that the two curves show the same qualitative behaviour. Up to TDO3, M ,  decreases 
as Tq increases and remains practically constant for Tq above this temperature. This is 
the expected behaviour in view of equation (15) and the behaviour of NfA with tem- 
perature (figure 5 ) .  In addition, it is interesting to note that this decrease of both M ,  and 
Nfh after quenches from Tq temperatures in the DO3 region enables us (taking into 
account equation (14)) to conclude that C’ increases in this region. This result means 
that for the class of alloy considered here, the term 6$’) > 0. 

4. Conclusions 

We have studied the atomic order dependence of elastic constants of BCC binary alloys 
near the A3B composition. The elastic constants are obtained at T = 0 K for frozen-in 
configurations quenched from different temperatures T, across the stability regions of 
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the three phases DO3, B2 andA2. At each temperature T,, the equilibrium configuration 
is obtained by means of Monte Carlo simulations of an Ising model for such an alloy. 

Assuming central pairwise additive forces, we deduce that the shear moduli C,, and 
C’ depends linearly on the number of NN (A’!&) and NNN (N!&) AB pairs respectively, 
whereas CI1 depends on both N&, and NfL. Given that in the DO3 region NfL exhibits 
a more remarkable variation with temperature than N!&, we expect that C’ will depend 
more strongly on the state of order than C4+ In the B2 and A2 regions N &  and N!& 
present comparable variations with temperature. Consequently, C’ and C,, should 
exhibit relative variations with order of similar magnitude. 

The results show important relative changes of the elastic constant C’ with ordering 
after quenches from T ,  < T D O 3 ,  and a nearly constant value when T ,  > TDO3, This 
behaviour is found to be in qualitative agreement with experimental data on the M ,  
temperature of Cu-Zn-A1 alloys, measured after quenches from temperatures Tq,  and 
it is independent of the fine detail of the interatomic potential. 
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